1、HashMap 简介

HashMap 主要用来存放键值对,它基于哈希表的 Map 接口实现,是常用的 Java 集合之一,是非线程安全的。
HashMap 可以存储 null 的 key 和 value,但 null 作为键只能有一个,null 作为值可以有多个
JDK1.8 之前 HashMap 由 数组+链表 组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的(“拉链法”解决冲突)。
JDK1.8 以后的 HashMap 在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树)时,将链表转化为红黑树,以减少搜索时间。
HashMap 默认的初始化大小为 16。之后每次扩充,容量变为原来的 2 倍。并且, HashMap 总是使用 2 的幂作为哈希表的大小。

数组优点:通过数组下标可以快速实现对数组元素的访问,效率极高;
链表优点:插入或删除数据不需要移动元素,只需修改节点引用,效率极高。

2、底层数据结构

2.1 JDK1.7

JDK1.8 之前 HashMap 底层是 数组和链表 结合在一起使用也就是 链表散列。
HashMap 通过 key 的 hashCode 经过扰动函数处理过后得到 hash 值,然后通过 (n - 1) & hash 判断当前元素存放的位置(这里的 n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。
所谓扰动函数指的就是 HashMap 的 hash 方法。使用 hash 方法也就是扰动函数是为了防止一些实现比较差的 hashCode() 方法 换句话说使用扰动函数之后可以减少碰撞。

JDK1.7 的 HashMap 的 hash 方法源码:

static int hash(int h) {
    // This function ensures that hashCodes that differ only by
    // constant multiples at each bit position have a bounded
    // number of collisions (approximately 8 at default load factor).

    h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}

JDK 1.8 HashMap 的 hash 方法源码:

static final int hash(Object key) {
    int h;
// key.hashCode():返回散列值也就是hashcode
// ^ :按位异或
// >>>:无符号右移,忽略符号位,空位都以0补齐
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

相比于 JDK1.8 的 hash 方法 ,JDK 1.7 的 hash 方法的性能会稍差一点点,因为毕竟扰动了 4 次。
所谓 “拉链法” 就是:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。

2.2 JDK1.8 之后

相比于之前的版本,JDK1.8 以后在解决哈希冲突时有了较大的变化。
当链表长度大于阈值(默认为 8)时,会首先调用 treeifyBin()方法。这个方法会根据 HashMap 数组来决定是否转换为红黑树。只有当数组长度大于或者等于 64 的情况下,才会执行转换红黑树操作,以减少搜索时间。否则,就是只是执行 resize() 方法对数组扩容。相关源码这里就不贴了,重点关注 treeifyBin()方法即可!

2.2.1 HashMap 类的结构
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
    // 序列号
    private static final long serialVersionUID = 362498820763181265L;
    // 数组默认的初始化长度16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;

    // 数组最大容量,2的30次幂,即1073741824
    static final int MAXIMUM_CAPACITY = 1 << 30;

    // 默认加载因子值
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    // 链表转换为红黑树的长度阈值
    static final int TREEIFY_THRESHOLD = 8;

    // 红黑树转换为链表的长度阈值
    static final int UNTREEIFY_THRESHOLD = 6;

    // 链表转换为红黑树时,数组容量必须大于等于64
    static final int MIN_TREEIFY_CAPACITY = 64;

    // HashMap里键值对个数
    transient int size;

    // 扩容阈值,计算方法为 数组容量*加载因子
    int threshold;

    // HashMap使用数组存放数据,数组元素类型为Node<K,V>
    transient Node<K,V>[] table;

    // 加载因子
    final float loadFactor;

    // 用于快速失败,由于HashMap非线程安全,在对HashMap进行迭代时,如果期间其他线程的参与导致HashMap的结构发生变化了(比如put,remove等操作),直接抛出ConcurrentModificationException异常
    transient int modCount;
}

重要的成员变量:

  • DEFAULT_INITIAL_CAPACITY = 1 << 4; Hash表默认初始容量
  • MAXIMUM_CAPACITY = 1 << 30; 最大Hash表容量
  • DEFAULT_LOAD_FACTOR = 0.75f;默认加载因子
  • TREEIFY_THRESHOLD = 8;链表转红黑树阈值
  • UNTREEIFY_THRESHOLD = 6;红黑树转链表阈值
  • MIN_TREEIFY_CAPACITY = 64;链表转红黑树时hash表最小容量阈值,达不到优先扩容。

loadFactor 加载因子

loadFactor 加载因子是控制数组存放数据的疏密程度,loadFactor 越趋近于 1,那么 数组中存放的数据(entry)也就越多,也就越密,也就是会让链表的长度增加,loadFactor 越小,也就是趋近于 0,数组中存放的数据(entry)也就越少,也就越稀疏。
loadFactor 太大导致查找元素效率低,太小导致数组的利用率低,存放的数据会很分散。loadFactor 的默认值为 0.75f 是官方给出的一个比较好的临界值。
给定的默认容量为 16,负载因子为 0.75。Map 在使用过程中不断的往里面存放数据,当数量达到了 16 * 0.75 = 12 就需要将当前 16 的容量进行扩容,而扩容这个过程涉及到 rehash、复制数据等操作,所以非常消耗性能。

threshold

threshold = capacity * loadFactor,当 Size>=threshold的时候,那么就要考虑对数组的扩增了,也就是说,这个的意思就是 衡量数组是否需要扩增的一个标准。

上面这些字段在下面源码解析的时候尤为重要,其中需要着重讨论的是加载因子是什么,为什么默认值为0.75f。
加载因子也叫扩容因子,用于决定HashMap数组何时进行扩容。比如数组容量为16,加载因子为0.75,那么扩容阈值为_16*0.75=12_,即HashMap数据量大于等于12时,数组就会进行扩容。我们都知道,数组容量的大小在创建的时候就确定了,所谓的扩容指的是重新创建一个指定容量的数组,然后将旧值复制到新的数组里。扩容这个过程非常耗时,会影响程序性能。所以加载因子是基于容量和性能之间平衡的结果:

  • 当加载因子过大时,扩容阈值也变大,也就是说扩容的门槛提高了,这样容量的占用就会降低。但这时哈希碰撞的几率就会增加,效率下降;
  • 当加载因子过小时,扩容阈值变小,扩容门槛降低,容量占用变大。这时候哈希碰撞的几率下降,效率提高。

可以看到容量占用和性能是此消彼长的关系,它们的平衡点由加载因子决定,0.75是一个即兼顾容量又兼顾性能的经验值。
此外用于存储数据的table字段使用transient修饰,通过transient修饰的字段在序列化的时候将被排除在外,那么HashMap在序列化后进行反序列化时,是如何恢复数据的呢?HashMap通过自定义的readObject/writeObject方法自定义序列化和反序列化操作。这样做主要是出于以下两点考虑:

  1. table一般不会存满,即容量大于实际键值对个数,序列化table未使用的部分不仅浪费时间也浪费空间;
  2. key对应的类型如果没有重写hashCode方法,那么它将调用Object的hashCode方法,该方法为native方法,在不同JVM下实现可能不同;换句话说,同一个键值对在不同的JVM环境下,在table中存储的位置可能不同,那么在反序列化table操作时可能会出错。
2.2.2 Node 节点类源码
// 继承自 Map.Entry<K,V>
static class Node<K,V> implements Map.Entry<K,V> {
       final int hash;// 哈希值,存放元素到hashmap中时用来与其他元素hash值比较
       final K key;//键
       V value;//值
       // 指向下一个节点
       Node<K,V> next;
       Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }
        // 重写hashCode()方法
        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }
        // 重写 equals() 方法
        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
}

Node包含了四个字段:hash、key、value、next,其中next表示链表的下一个节点。

HashMap通过hash方法计算key的哈希码,然后通过(n-1)&hash公式(n为数组长度)得到key在数组中存放的下标。当两个key在数组中存放的下标一致时,数据将以链表的方式存储(哈希冲突,哈希碰撞)。我们知道,在链表中查找数据必须从第一个元素开始一层一层往下找,直到找到为止,时间复杂度为O(N),所以当链表长度越来越长时,HashMap的效率越来越低。

为了解决这个问题,JDK1.8开始采用数组+链表+红黑树的结构来实现HashMap。当链表中的元素超过8个(TREEIFY_THRESHOLD)并且数组长度大于64(MIN_TREEIFY_CAPACITY)时,会将链表转换为红黑树,转换后数据查询时间复杂度为O(logN)。

红黑树的节点使用TreeNode表示:

static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
    TreeNode<K,V> parent;  // 父
    TreeNode<K,V> left;    // 左
    TreeNode<K,V> right;   // 右
    TreeNode<K,V> prev;    // needed to unlink next upon deletion
    boolean red;           // 判断颜色
    TreeNode(int hash, K key, V val, Node<K,V> next) {
        super(hash, key, val, next);
    }
    // 返回根节点
    final TreeNode<K,V> root() {
        for (TreeNode<K,V> r = this, p;;) {
            if ((p = r.parent) == null)
                return r;
            r = p;
        }
    }
}

3、HashMap 源码分析

3.1 构造方法

HashMap 中有四个构造方法,它们分别如下:

// 默认构造函数。
public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all   other fields defaulted
}

// 包含另一个“Map”的构造函数
public HashMap(Map<? extends K, ? extends V> m) {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    putMapEntries(m, false);//下面会分析到这个方法
}

// 指定“容量大小”的构造函数
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

// 指定“容量大小”和“加载因子”的构造函数
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}

3.2 putMapEntries 方法

final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
    int s = m.size();
    if (s > 0) {
        // 判断table是否已经初始化
        if (table == null) { // pre-size
            // 未初始化,s为m的实际元素个数
            float ft = ((float)s / loadFactor) + 1.0F;
            int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                     (int)ft : MAXIMUM_CAPACITY);
            // 计算得到的t大于阈值,则初始化阈值
            if (t > threshold)
                threshold = tableSizeFor(t);
        }
            // 已初始化,并且m元素个数大于阈值,进行扩容处理
        else if (s > threshold)
            resize();
        // 将m中的所有元素添加至HashMap中
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
            K key = e.getKey();
            V value = e.getValue();
            putVal(hash(key), key, value, false, evict);
        }
    }
}

3.3 put 方法

HashMap 只提供了 put 用于添加元素,putVal 方法只是给 put 方法调用的一个方法,并没有提供给用户使用。

3.3.1 put方法源码
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}
3.3.2 put方法通过hash函数计算key对应的哈希值,hash函数源码如下:
static final int hash(Object key) {
    int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

如果key为null,返回0,不为null,则通过(h = key.hashCode()) ^ (h >>> 16)公式计算得到哈希值。该公式通过hashCode的高16位异或低16位得到哈希值,主要从性能、哈希碰撞角度考虑,减少系统开销,不会造成因为高位没有参与下标计算从而引起的碰撞。
得到key对应的哈希值后,再调用putVal(hash(key), key, value, false, true)方法插入元素:

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // 如果数组(哈希表)为null或者长度为0,则进行数组初始化操作
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // 根据key的哈希值计算出数据插入数组的下标位置,公式为(n-1)&hash
    if ((p = tab[i = (n - 1) & hash]) == null)
        // 如果该下标位置还没有元素,则直接创建Node对象,并插入
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        // 如果目标位置key已经存在,则直接覆盖
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        // 如果目标位置key不存在,并且节点为红黑树,则插入红黑树中
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            // 否则为链表结构,遍历链表,尾部插入
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    // 如果链表长度大于等于TREEIFY_THRESHOLD,则考虑转换为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash); // 转换为红黑树操作,内部还会判断数组长度是否小于MIN_TREEIFY_CAPACITY,如果是的话不转换
                    break;
                }
                // 如果链表中已经存在该key的话,直接覆盖替换
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            // 返回被替换的值
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    // 模数递增
    ++modCount;
    // 当键值对个数大于等于扩容阈值的时候,进行扩容操作
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}
3.3.3 put操作过程总结:
  1. 判断HashMap数组是否为空,是的话初始化数组(由此可见,在创建HashMap对象的时候并不会直接初始化数组);
  2. 通过_(n-1) & hash_计算key在数组中的存放索引;
  3. 目标索引位置为空的话,直接创建Node存储;
  4. 目标索引位置不为空的话,分下面三种情况:4.1. key相同,覆盖旧值;4.2. 该节点类型是红黑树的话,执行红黑树插入操作;4.3. 该节点类型是链表的话,遍历到最后一个元素尾插入,如果期间有遇到key相同的,则直接覆盖。如果链表长度大于等于TREEIFY_THRESHOLD,并且数组容量大于等于MIN_TREEIFY_CAPACITY,则将链表转换为红黑树结构;
  5. 判断HashMap元素个数是否大于等于threshold,是的话,进行扩容操作。

3.3.4 对比JDK1.7put方法

对于 put 方法的分析如下:

  1. 如果定位到的数组位置没有元素 就直接插入。
  2. 如果定位到的数组位置有元素,遍历以这个元素为头结点的链表,依次和插入的 key 比较,如果 key 相同就直接覆盖,不同就采用头插法插入元素。
public V put(K key, V value)
    if (table == EMPTY_TABLE) {
    inflateTable(threshold);
}
if (key == null)
    return putForNullKey(value);
int hash = hash(key);
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) { // 先遍历
    Object k;
    if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
        V oldValue = e.value;
        e.value = value;
        e.recordAccess(this);
        return oldValue;
    }
}

modCount++;
addEntry(hash, key, value, i);  // 再插入
return null;
}

3.4 get 方法

public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    // 判断数组是否为空,数组长度是否大于0,目标索引位置下元素是否为空,是的话直接返回null
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 如果目标索引位置元素就是要找的元素,则直接返回
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 如果目标索引位置元素的下一个节点不为空
        if ((e = first.next) != null) {
            // 如果类型是红黑树,则从红黑树中查找
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
            // 否则就是链表,遍历链表查找目标元素
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

3.5 resize 方法

进行扩容,会伴随着一次重新 hash 分配,并且会遍历 hash 表中所有的元素,是非常耗时的。在编写程序中,要尽量避免 resize。

final Node<K,V>[] resize() {
    // 扩容前的数组
    Node<K,V>[] oldTab = table;
    // 扩容前的数组的大小和阈值
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    // 预定义新数组的大小和阈值
    int newCap, newThr = 0;
    if (oldCap > 0) {
        // 超过最大值就不再扩容了
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
            // 扩大容量为当前容量的两倍,但不能超过 MAXIMUM_CAPACITY
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
        // 当前数组没有数据,使用初始化的值
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        // 如果初始化的值为 0,则使用默认的初始化容量,默认值为16
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 如果新的容量等于 0
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr; 
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    // 开始扩容,将新的容量赋值给 table
    table = newTab;
    // 原数据不为空,将原数据复制到新 table 中
    if (oldTab != null) {
        // 根据容量循环数组,复制非空元素到新 table
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                // 如果链表只有一个,则进行直接赋值
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    // 红黑树相关的操作
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    // 链表复制,JDK 1.8 扩容优化部分
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        // 原索引
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                            // 原索引 + oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 将原索引放到哈希桶中
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 将原索引 + oldCap 放到哈希桶中
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

JDK1.8在扩容时通过高位运算e.hash & oldCap结果是否为0来确定元素是否需要移动,主要有如下两种情况:
情况一:
扩容前oldCap=16,hash=5,(n-1)&hash=15&5=5,hash&oldCap=5&16=0;
扩容后newCap=32,hash=5,(n-1)&hash=31&5=5,hash&oldCap=5&16=0。
这种情况下,扩容后元素索引位置不变,并且hash&oldCap==0。

情况二:
扩容前oldCap=16,hash=18,(n-1)&hash=15&18=2,hash&oldCap=18&16=16;
扩容后newCap=32,hash=18,(n-1)&hash=31&18=18,hash&oldCap=18&16=16。
这种情况下,扩容后元素索引位置为18,即旧索引2加16(oldCap),并且hash&oldCap!=0。

4. 遍历原理

我们通常使用下面两种方式遍历HashMap:

package map;

import java.util.Collection;
import java.util.HashMap;
import java.util.Set;

public class HashMapDemo {

    public static void main(String[] args) {
        HashMap<String, String> map = new HashMap<String, String>();
        // 键不能重复,值可以重复
        map.put("san", "张三");
        map.put("si", "李四");
        map.put("wu", "王五");
        map.put("wang", "老王");
        map.put("wang", "老王2");// 老王被覆盖
        map.put("lao", "老王");
        System.out.println("-------直接输出hashmap:-------");
        System.out.println(map);
        /**
         * 遍历HashMap
         */
        // 1.获取Map中的所有键
        System.out.println("-------foreach获取Map中所有的键:------");
        Set<String> keys = map.keySet();
        for (String key : keys) {
            System.out.print(key+"  ");
        }
        System.out.println();//换行
        // 2.获取Map中所有值
        System.out.println("-------foreach获取Map中所有的值:------");
        Collection<String> values = map.values();
        for (String value : values) {
            System.out.print(value+"  ");
        }
        System.out.println();//换行
        // 3.得到key的值的同时得到key所对应的值
        System.out.println("-------得到key的值的同时得到key所对应的值:-------");
        Set<String> keys2 = map.keySet();
        for (String key : keys2) {
            System.out.print(key + ":" + map.get(key)+"   ");

        }
        /**
         * 如果既要遍历key又要value,那么建议这种方式,因为如果先获取keySet然后再执行map.get(key),map内部会执行两次遍历。
         * 一次是在获取keySet的时候,一次是在遍历所有key的时候。
         */
        // 当我调用put(key,value)方法的时候,首先会把key和value封装到
        // Entry这个静态内部类对象中,把Entry对象再添加到数组中,所以我们想获取
        // map中的所有键值对,我们只要获取数组中的所有Entry对象,接下来
        // 调用Entry对象中的getKey()和getValue()方法就能获取键值对了
        Set<java.util.Map.Entry<String, String>> entrys = map.entrySet();
        for (java.util.Map.Entry<String, String> entry : entrys) {
            System.out.println(entry.getKey() + "--" + entry.getValue());
        }

        /**
         * HashMap其他常用方法
         */
        System.out.println("after map.size():"+map.size());
        System.out.println("after map.isEmpty():"+map.isEmpty());
        System.out.println(map.remove("san"));
        System.out.println("after map.remove():"+map);
        System.out.println("after map.get(si):"+map.get("si"));
        System.out.println("after map.containsKey(si):"+map.containsKey("si"));
        System.out.println("after containsValue(李四):"+map.containsValue("李四"));
        System.out.println(map.replace("si", "李四2"));
        System.out.println("after map.replace(si, 李四2):"+map);
    }

}

我们查看entrySet,iterator,hasNext,next方法的源码就可以清楚的了解到HashMap遍历原理了:

public Set<Map.Entry<K,V>> entrySet() {
    Set<Map.Entry<K,V>> es;
    // entrySet一开始为null,通过new EntrySet()创建
    return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
}

final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
    public final int size()                 { return size; }
    public final void clear()               { HashMap.this.clear(); }
    // EntrySet内部包含迭代器方法,方法内部通过new EntryIterator()创建Entry迭代器
    public final Iterator<Map.Entry<K,V>> iterator() {
        return new EntryIterator();
    }
    ...... 
}

// EntryIterator继承自HashIterator,调用EntryIterator的hasNext方法实际调用的是
// 父类HashIterator的hashNext方法,调用EntryIterator的next方法,方法内部调用的是父类HashIterator
// 的nextNode方法,所以我们主要关注HashIterator的源码
final class EntryIterator extends HashIterator implements Iterator<Map.Entry<K,V>> {
    public final Map.Entry<K,V> next() { return nextNode(); }
}

abstract class HashIterator {
    Node<K,V> next;        // 下一个节点
    Node<K,V> current;     // 当前节点
    int expectedModCount;  // 期待的模数值,用于快速失败
    int index;             // 当前遍历的table index

    HashIterator() {
        // 将当前模数值赋值给期待的模数值,所以在遍历的时候,别的线程调用了当前hashMap实例的
        // 增删改方法,模数值会改变,那么expectedModCount和modCount就不相等了,遍历操作直接
        // 抛出ConcurrentModificationException
        expectedModCount = modCount;
        Node<K,V>[] t = table;
        current = next = null;
        // 从hashMap数组头部开始遍历
        index = 0;
        if (t != null && size > 0) { // advance to first entry
            // 从数组头部开始找,index递增,当index位置的节点不为空时,将其赋值给next
            // 也就是说,在创建hashMap迭代器的时候,内部就已经找到了hashMap数组中第一个非空节点了
            do {} while (index < t.length && (next = t[index++]) == null);
        }
    }

    public final boolean hasNext() {
        // 逻辑很简单,就是判断next是否为空
        return next != null;
    }

    final Node<K,V> nextNode() {
        Node<K,V>[] t;
        Node<K,V> e = next;
        if (modCount != expectedModCount)
            // 模数判断
            throw new ConcurrentModificationException();
        if (e == null)
            // 如果next为空了,还调用nextNode方法的话,将抛出NoSuchElementException异常
            throw new NoSuchElementException();
        // 这段逻辑也很简单,主要包含如下两种情况:
        // 1. 如果当前节点的next节点为空的话,说明该节点无需进行链表遍历了(就一个节点或者已经到了链表的末尾),那么进行do while循环,直到找到hashMap数组中下一个不为空的节点
        // 2. 如果当前节点的next节点不为空的话,说明该位置存在链表,那么外界在循环调用iterator的next方法时,实际就是不断调用nextNode方法遍历链表操作
        if ((next = (current = e).next) == null && (t = table) != null) {
            do {} while (index < t.length && (next = t[index++]) == null);
        }
        return e;
    }

    ......
}

5 与JDK1.7主要区别

5.1 数组元素类型不同

JDK1.8 HashMap数组元素类型为Node<K,V>,JDK1.7 HashMap数组元素类型为Entry<K,V>:

transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

static class Entry<K,V> implements Map.Entry<K,V> {
    final K key;
    V value;
    Entry<K,V> next;
    int hash;

    ......
}

5.2 hash计算规则不同

JDK1.7 hash计算规则为:

final int hash(Object k) {
    int h = hashSeed;
    if (0 != h && k instanceof String) {
        return sun.misc.Hashing.stringHash32((String) k);
    }

    h ^= k.hashCode();

    // This function ensures that hashCodes that differ only by
    // constant multiples at each bit position have a bounded
    // number of collisions (approximately 8 at default load factor).
    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
}

JDK1.8 hash计算规则为:

static final int hash(Object key) {
    int h;
// key.hashCode():返回散列值也就是hashcode
// ^ :按位异或
// >>>:无符号右移,忽略符号位,空位都以0补齐
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

5.3 put操作不同

JDK1.7并没有使用红黑树,如果哈希冲突后,都用链表解决。区别于JDK1.8的尾部插入,JDK1.7采用头部插入的方式:

public V put(K key, V value) {   
    // 键为null,将元素放置到table数组的0下标处
    if (key == null)  
        return putForNullKey(value); 
    // 计算hash和数组下标索引位置
    int hash = hash(key.hashCode());  
    int i = indexFor(hash, table.length);  
    // 遍历链表,当key一致时,说明该key已经存在,使用新值替换旧值并返回
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {  
        Object k;  
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {  
            V oldValue = e.value;  
            e.value = value;  
            e.recordAccess(this);  
            return oldValue;  
        }  
    }  
    
    modCount++;
    // 插入链表
    addEntry(hash, key, value, i);  
    return null;  
} 

private V putForNullKey(V value) { 
    // 一样的,新旧值替换
    for (Entry<K,V> e = table[0]; e != null; e = e.next) {  
        if (e.key == null) {  
            V oldValue = e.value;  
            e.value = value;  
            e.recordAccess(this);  
            return oldValue;  
        }  
    }  
    
    modCount++;  
    // 插入到数组下标为0位置
    addEntry(0, null, value, 0);  
    return null;  
} 

void addEntry(int hash, K key, V value, int bucketIndex) {
    // 新值头部插入,原先头部变成新的头部元素的next
    Entry<K, V> e = table[bucketIndex];
    table[bucketIndex] = new Entry<K, V>(hash, key, value, e);
    // 计数,扩容
    if (size++ >= threshold)
        resize(2 * table.length);
}

5.4 扩容操作不同

DK1.8在扩容时通过高位运算e.hash & oldCap结果是否为0来确定元素是否需要移动,JDK1.7重新计算了每个元素的哈希值,按旧链表的正序遍历链表、在新链表的头部依次插入,即在转移数据、扩容后,容易出现链表逆序的情况:

void resize(int newCapacity) {
    Entry[] oldTable = table;
    int oldCapacity = oldTable.length;
    if (oldCapacity == MAXIMUM_CAPACITY) {
        threshold = Integer.MAX_VALUE;
        return;
    }

    Entry[] newTable = new Entry[newCapacity];
    transfer(newTable, initHashSeedAsNeeded(newCapacity));
    table = newTable;
    threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}

/**
 * Transfers all entries from current table to newTable.
 */
void transfer(Entry[] newTable, boolean rehash) {
    int newCapacity = newTable.length;
    for (Entry<K,V> e : table) {
        while(null != e) {
            Entry<K,V> next = e.next;
            if (rehash) {
                e.hash = null == e.key ? 0 : hash(e.key);
            }
            int i = indexFor(e.hash, newCapacity);
            e.next = newTable[i];
            newTable[i] = e;
            e = next;
        }
    }
}